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Abstract

In this paper we derived the pressure required to open a spherical cavity in an infinite brittle ceramic at a constant
speed. The ceramic material is assumed to crack upon reaching its elastic limit. Subsequent failure of the cracked
material due to compressive failure renders pulverization of the material. The pulverized material is assumed to follow a
Mohr-Coulomb type constitutive behavior. The results show that at high cavity expansion speeds the comminuted
region outruns the cracked region, i.e. the cracked region disappears. At very high cavity expansion speeds the com-
minuted zone propagation speed saturates at a level slightly below the longitudinal wave speed. Limited comparison
with experimental penetration resistance shows reasonable agreement between theory and experiment. © 2001 Elsevier
Science Ltd. All rights reserved.

Keywords: Cavity expansion; Penetration resistance; Brittle materials; Armor ceramics; Cracking and comminution; Similarity
transformation

1. Introduction

Ceramic materials such as Al,Os;, AIN, TiB,, Si,O; etc. hold advantage in many applications over
conventional metals due to their low density and high compressive strength. However, since these materials
are extremely weak in tension, extensive fracturing and pulverization occurs when subjected to high levels
of stresses. Cavity expansion analysis is of interest in various applications such as high-speed penetration,
underground explosion, deep punching, design of protective structures against blast loading, impact cra-
tering etc. While quasi-static analyses have been used for deep-punching problems in elastic—plastic ma-
terials (Bishop et al., 1945; Wright et al., 1992; Satapathy and Bless, 2000a), dynamic analyses have been
developed (Forrestal, 1986; Forrestal and Luk, 1988; Forrestal and Tzou, 1997; Satapathy et al., 1999) for
high-speed penetration problems in rocks, metals, concrete, and glass, respectively. The analysis of dynamic
response of brittle ceramics is somewhat complicated due to presence of tensile cracking and comminution
(breaking into powder like structure). The cavity expansion analysis technique has been extended to ce-
ramic materials by Forrestal and Longcope (1990) and Satapathy and Bless (1996) for quasi-static con-
ditions. Using quasi-static analysis, Satapathy and Bless (2000b) explained the interface defeat phenomena
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Nomenclature o C./C.
o 641/(3+44)

a radial location of comminuted-cracked f Cp/Co
boundary 0 C,/V

b radial location of elastic-undisturbed o, ratio of saturated zone propagation
boundary speed to cavity expansion speed

c radial location of cracked—elastic 7y C./GC,
boundary n volumetric strain

C. speed of the cracked zone boundary A pressure-shear slope of comminuted

Cq bar wave speed material

C. dilatational elastic wave speed v poisson’s ratio

G speed of the comminuted zone boundary p density

E Young’s modulus or tensile failure strength

h radial location of the cavity surface o, radial stress

P, cavity expansion pressure gy hoop stress

r radial position T saturated shear strength of comminuted

R penetration resistance material

t time variable & r/ C.t, non-dimensional radial location in

u particle speed in comminuted region elastic region

u u/C.t, non-dimensional displacement in &, r/ C.t, non-dimensional radial location in
elastic region cracked region

Uy u/Cpt, non-dimensional displacement in ¢ r/Vt, non-dimensional radial location in
cracked region comminuted region

u3 u/Vt, non-dimensional displacement in U u/V, non-dimensional particle speed in
comminuted region comminuted region

14 cavity expansion velocity

Y compressive strength

in confined armor ceramics. Here we present the dynamic cavity expansion solution to determine the dy-
namic response of ceramic materials when subjected to cavity expansion at a constant velocity. We adopt
the similarity transform method used by Forrestal and Luk (1988) for metals and by Forrestal and Tzou
(1997) for concrete material. As an application, we apply the analysis to model high-speed penetration into
ceramic targets.

2. Response regions

As discussed by Satapathy and Bless (1996, 2000b), the response region in ceramics due to sudden ex-
pansion of a cavity consists of five distinct zones: cavity, comminuted zone, radially cracked zone, elastic
zone and undisturbed zone. As the cavity is subjected to an instantaneous expansion velocity, an elastic
wave spreads out at the bulk sound speed. The hoop stresses in the elastic region are tensile. Since the
tensile strength of the material is very low, radial cracks appear when the hoop stresses equal the tensile
strength of the material. The material in the cracked zone can support only compressive radial stress. When
the radial stress in cracked ceramic rises to the compressive strength of the material, we assume that the
radially cracked material cracks further, and is reduced to a powder (comminuted) like structure. The
comminuted material is taken to behave as a Mohr—Coulomb material with zero cohesive strength. Plate
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=1/a=C,/C,

Fig. 1. Dynamic response regions in a spherical cavity.

impact experiments by Rosenberg et al. (1987) have shown that the extensively fractured ceramics can
support only a finite amount of shear stress. We examine the implication of ‘capping’ the Mohr—Coulomb
behavior with a constant shear strength. In absence of a better rationality, we assume that the comminuted
region is non-dilatant.

Fig. 1 shows the different response regions and designates the boundaries in terms of variables to be
introduced in subsequent sections. For spherical symmetry the conservation equations for mass and mo-
mentum in Eulerian coordinates are as follows:

op 1 0o, ,

o g (080 =0, )
dao, (0, —09) ov ov
3 +2f— —p<§+v§). (2)

The stresses are taken to be positive in compression. These two equations have to be integrated in different
zones along with the constitutive equations and the boundary conditions to yield the field solutions for the
stresses and deformation. Solution of these coupled differential equations is simplified by transforming
them by a similarity transformation which reduces the partial differential equations into ordinary differ-
ential equations. This method is particularly attractive for applications in penetration problems since it is
known that the steady state regime dominates the penetration process for high-velocity penetration. As a
result, the associated cavitation phenomenon is self-similar and takes place at a steady velocity for most of
the penetration.

3. Elastic region

The stress—displacement relations for spherical symmetry can be written as

E Ou u

O'r:—m{(l—\))a‘i'zv;}, (3)
E ou u

=T e ) @

where stresses are assumed positive in compression. Since the particle velocity in the elastic region is likely
to be negligible, we ignore the convective term in Eq. (2). Thus substituting the strain—displacement rela-
tions in conservation equations, one obtains
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*u 2 0u 2u 1 o%u

—t-—-=== = 5
or? * ror rr C2of’ (5)
where C. is the dilatational elastic wave speed. Now introducing similarity transformations,
r u
=— and @ =—, 6
i C.t uj C.t (6)

Eq. (5) transforms to
a2 da 2a ,,d%
—+——-—S5=0¢—, 7
dé% ¢ dé; 5? df? 7
where o = C./C..
Forrestal and Luk (1988) have shown that Eq. (7) has a solution of the form

2
1 —3a2¢
2
302
where A and B are constants of integration to be evaluated from the boundary conditions. We do not

envisage the presence of transverse cracks at the elastic—undisturbed interface. Denoting jump in any
quantity by double square brackets,

@, =o (9)

since there is no discontinuity in displacement (hoop cracks) at the elastic-undisturbed boundary. The other
boundary condition is given by the fact that the elastic material cracks when the tensile hoop stress equals
the tensile strength of the material. That is,

0'0(51 = 1) = —Oy. (10)

Using the boundary conditions (9) and (10) in the solution for the transformed displacement solution (Eq.
(8)) we get

3 of (1 —v)
B= 24 A= ‘ 11
2 (%pOC§>2v(cx3—1)+(25x3—3ocz—|—1) (11)

ii = Ao, — B , (8)

4. Cracked region

In this region the hoop stresses are zero due to the presence of radial cracks. For spherical symmetry, the
two hoop directions perpendicular to the radial direction are equivalent. The material in this region is then
in the form of needles. Alternatively, it is possible that the cracks are distributed in an incoherent and
discontinuous manner in such a way that the material cannot support hoop stress and yet is not needle-like.
In either case, the material in the cracked region is capable of transmitting only radial stress. Since the hoop
stress is zero, Eq. (2) reduces to

2
0o, 20, _, 0 (12)
or r or?

Presence of radial cracks introduces anisotropy in this region and thus we cannot use the isotropic elastic
constants. However, absence of transverse cracks ensures no degradation of the elastic moduli in the radial
direction. Hence the stress and displacements are related by
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Ou
= —E—. 13
7 or (13)
For the cracked region we introduce the following similarity transforms,
u
=—— d mp=—. 14
= cy ¢ MmTo (14)

Using this similarity transformation and the stress relation, Eq. (13) in the equation of motion (Eq. (12)),
we get
dzﬁz 2 dﬁz ) dzftz
S+ 2=pE
a2 & dg &
where ff = C,/Ce; Ce = \/E/p, the bar wave speed. Integration of Eq. (15) results in the following ex-
pression for the dimensionless displacement in the cracked region:

|1 e

Uy = —c 1+Fe + 2,
&

where ¢; and ¢, are constants of integration. The inward boundary of the cracked region is defined by the

condition that the cracked material pulverizes when the compressive radial stress exceeds the compressive
strength of the material. Thus,

(15)

(16)

g du,

—E— =Y. 17
e (17)

O_r(fZ = 1) =

&H=1

Since no transverse crack is envisaged at the elastic—cracked boundary, the displacement should be con-
tinuous there. As a result, we get the second boundary condition for displacement as follows:

; (18)

753

=Y
&=y yi

&=1

where y = C,/C,. Evaluating radial stress from Eq. (13) with displacement solution (Eq. (16)) along with
the boundary conditions (Egs. (17) and (18)), we obtain

Y Y (B + 1)+< oty )[ (1—v)(203 = 32 + 1)

=———— and = .
CTEFE -1 CTE (B 1)\ pC) [ 2@ — 1) + (223 =32+ 1)

(19)

5. Hugoniot jump conditions

For the dynamic cavity expansion involving propagation of comminuted, cracked and elastic waves into
the undisturbed material, Hugoniot jump conditions have to be satisfied at the propagation front. Denoting
quantities on either side of the disturbance by subscripts 1 and 2, Hugoniot jump conditions for mass and
momentum can be written as (Courant and Friedrichs, 1948):

p1(v1 = C) = py(v2 — C), (20)
oy — o1 = p(C —v1)(v2 — v1), (21)

where v, C and ¢ are particle velocity, disturbance velocity and normal stress respectively.



5838 S. Satapathy | International Journal of Solids and Structures 38 (2001) 5833-5845

Denoting the volumetric strain by 7, i.e.,

P Po
=—_=1-2 22
n= ) (22)
Egs. (20) and (21) can be combined to yield
C—v )
R NS 23)
(I=n-)

For applying Eq. (23) to the elastic—cracked interface, we denote the quantities on the elastic and cracked
sides of the interface by subscripts 1 and 2, respectively. The particle velocity and the radial stress on the
elastic side of the interface are given by following equations:

_Gu_ _ dijll o (1712)
91 —5— Celuy — éld_@] . =3CA 202 (24)
&=
_ ApCE (1 +v) —3va? — (1 —2v)
0'1——(1_v)|: ocz . (25)

The displacement solution derived in Eq. (8) along with the integration constants evaluated in Eq. (11)
yields the stress distribution (and hence pressure) in the elastic region from Egs. (3) and (4). The volumetric
strain on the elastic side of the interface can be calculated by inserting the pressure thus calculated at &, = 1
into Eq. (22) as follows:

" :_< 3af> o2(o—1)(1 - v) 06)

1pC2 ) 203(1 +v) =302 + (1 — 2v)]

Similarly, the volumetric strain on the cracked side of the interface can be calculated by inserting the
displacement solution (Egs. (16) and (19)) into the stress distribution solution (Eq. (13)), and finally
evaluating the volumetric strain from Eq. (22) as follows:

Y (1-p

=1z % (27)

3K (1-p)y
Now evaluating the radial stress in the cracked region from either side of the discontinuity (from Egs. (13),
(16) and (19), and using the Hugoniot jump condition (Eq. (23)), the following relation between o and f is
obtained.

,’2_ z&
"= \pCa

— ) (28)
o1 — mpo(?;f )2

The above relationship is not an implicit equation in y, since the product ffy is a function of o only.

2.2 o [ Cc—0 2 2,2 2,2 C—nh :
>2 Y(1—p77) *ﬁ(l,m) +01/3”/*’71/3%00(W)

6. Comminuted region

When the radial compressive stress in the cracked region, where the material has already failed in two
orthogonal hoop directions, increases to the compressive strength of the material, it becomes granular or
pulverized. A Mohr-Coulomb type material model is employed to define the material behavior of the
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granular material. The granular material cannot support any shear in the absence of pressure, as observed
by Rosenberg et al. (1987). Thus the cohesive strength is taken to be zero. There is a possibility that the level
of comminution will vary with varying pressure, resulting in a non-linear pressure—shear behavior. We
ignore this possible non-linearity, and assume that the shear strength increases linearly with the confining
pressure. Later, we shall investigate the possibility of shear saturation. Denoting the constant of propor-
tionality between pressure and shear by Ay, for spherical symmetry

o, — 0y o, + 20y
=2 . 29
2 R (29)
Using Eq. (29), the equation of motion, Eq. (2), reduces to
do, _0, ov ov
20— =—p| —+v—
6r+ ar p(6t+06r)7 (30)
where & = 64,/(3 + 4/,). Employing the similarity transformations
ro_u v
és—ﬁ, M3_ﬁ and U—;» (31)
in the comminuted region, Eq. (30) becomes
do, g dUu
—L42a-L=—pV?P—(U-&). 32
s, 2 p dz, ( 3) (32)

The Mohr-Coulomb relation does not require any equation of state. However, to evaluate the con-
vection quantities we need a relation between particle velocity and density. The equation of state of
comminuted materials has not been established yet. Even if statistical homogeneity is assumed, the elastic
moduli may be different from those of the intact material. Dilatancy and bulking due to comminution is
counteracted by compaction due to presence of high pressure. Curran et al. (1993) observed that large scale
dilatancy occurs only after the compressive stress has been removed. Hence, to first order, one may assume
that the dilatancy and compaction cancel out each other. Ignoring any change in density in the comminuted
region, the mass conservation equation (Eq. (1)) reduces to,

D,

v =
P2’

(33)

where D is the constant of integration. For a cavity being created in a continuous medium, with a constant
cavity expansion velocity, v(r = #) = V. Thus, in terms of non-dimensional quantities, Eq. (33) becomes

1

U=-. (34)
&
Inserting Eq. (34) into Eq. (32) and integrating once yields
P V2 2 254 2 261 D,
L= — _ S - —, 35
’ (@“)( 2m—4s Tois )T (39)

where D, is the integration constant. The Hugoniot jump condition is invoked at the comminuted—cracked
interface to evaluate D,. By assumption, there is no dilatancy across the cracked—comminuted interface.
Hence from Egs. (20) and (21), there will be no jump in particle velocity or radial stress at this interface. But
the density for this region is the same as that at the cracked—comminuted boundary. From Egs. (17) and
(22), the density is given by p = p,/(1 — Y/3K). Since ¥ < K, p ~ p,. Now using the condition that the
cracked material pulverizes when the radial stress equals the compressive strength, i.e., g, | =Y (where
0 = C,/V), and continuity of radial stress from the Hugoniot jump condition,

&3=0
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_ _ 1 _
Dy = Y6* 4 2p, V> ( - Tty —52“> . (36)

2(2—2) 25— 1

Finally, denoting the pressure at the cavity surface by P., the stress required to maintain the constant
cavity expansion velocity for opening up a spherical cavity in a continuous ceramic medium is given by the
following expression:

(37)

- 525{74 252&71 3
P = ar|§3=1 = Y520< + ,00V2<

27&_172a+(172&)(27&)

The quantity 6 needs to be related to o and . Volume conservation in the incompressible comminuted
zone, in terms of the non-dimensional quantities, is given by

(&—w) =& -1 (38)
Evaluating Eq. (38) at &; = J and assuming that i3(&; = ) is small,

_ 1

ii3(&; = 0) = IR (39)
Continuity of displacement at the cracked—comminuted boundary is enforced by requiring that

U3(&3 = 0) = dup(& = 1). (40)
Thus, from Egs. (16), (39) and (40), the following relation between «, f and ¢ is obtained.

8 = ! (41)

3[02 — (1 +ﬂ2)} '

To compute P, as a function of the cavity expansion velocity, we adopt the following procedure. Starting
with a given o, v; and #, are calculated from Egs. (24) and (26), respectively. Then Eq. (28) is employed to
compute f. Subsequently, the constants ¢; and ¢, are calculated from Eq. (19). Finally, ¢ is calculated from
Eq. (41), from which P, is calculated from Eq. (37).

7. Elastic-comminuted response

Numerical evaluations (shown later) indicate that the cracked zone disappears when the cavity expan-
sion velocity increases beyond a certain value. Thereafter the material response is elastic-comminuted. In
such a situation, the constant 4 in Eq. (8) needs to be re-evaluated using the boundary condition
g,(¢&, = 1) =Y. Evaluation of Eq. (3) with Egs. (6) and (8), along with the above boundary condition,
yields

Y(1-v) B
pPoC2 | PP +2v) =3vpP — (1 —2v) |
Also to evaluate ¢, the boundary condition (40) must be replaced by
(&3 = 0) = duy (& = 1). (43)
Evaluating Eqgs. (43), (42), (39) and (8), the following relationship between f§ and 0 is obtained.

4= (42)

3 _ 28
o= 34(28° =387 + 1) (44)

The cavity expansion pressure is still given by Eq. (37).
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8. Shear saturation in the failed material

Experiments (Rosenberg et al., 1987) suggest that the shear strength of the material immediately behind
the shock wave in plate impact experiments saturates for shock pressures above the Hugoniot elastic limit
(HEL). So far, we have modeled the comminuted material as a linear Mohr—Coulomb-type material. If the
failed material saturates at a level o, — gy = 27, the comminuted region can be divided into two sub-regions:
a saturated region (7 < » < /') and a linear region (4’ < r < a). From Eq. (29),

27

o=~ (45)

The equation of motion for the saturated region becomes

do, 4t ,dU

s g
Integrating Eq. (46) with Eq. (34) from r=h (&3 =1, 0, =21/@) to r = H' (&3 =04, 0, = F),

(U—&). (46)

2 2
Po=2 4 deins, + 2
o 2

1 4
T 4
3—&-5? 511 (47)

The equation of motion for the linear failed region is given by Eq. (32). Integrating this equation with the
velocity distribution given by Eq. (33), from r =4 (£ =96y) to r=a(é; =9) and recognizing that
0,(& = 01) = 2t/a and 6,(& = 6) = ¥, one obtains

524 5%574 P 5%011]

20— 4 20— 1 (48)

Yo — Z—_T(s? = 2p,V? [
a
Thus for a given 5, Eq. (44) is solved for 6. Eq. (48) is then iteratively solved to obtain ¢;, which is used in
Eq. (47) to yield the cavity expansion pressure.
Finally, when the comminuted region is fully saturated (i.e. §; = o), the outer integration limit for Eq.
(46) becomes o,(&; = d) = Y. Thus the expression for cavity expansion pressure becomes,

2
PC = Y—‘r4‘[11’151 +i

2 5t 0

3+i_i] @)

9. Results

As an application of the dynamic spherical cavity expansion analysis we have chosen Coors AD995
alumina ceramic for our study. The elastic constants for Coors AD995 alumina are calculated from the
longitudinal and transverse wave speeds reported by Grady (1995) as £ = 373.14 GPa, K = 231.8 GPa,
p = 3890 kg/m. The quasi-static strength parameters as published by Coors are: compressive strength,
Y = 2.62 GPa; and tensile strength o = 0.262 GPa. Simha et al. (1995) measured the compressive strength
of AD995 alumina from bar impact tests; it varied from 2.6 to 3 GPa. Bar impact tests of similar alumina
give intermediate results, as shown by Brar et al. (1988) and Cosculleula (1992). Dandekar and Bartkowski
(1993) measured the spall strength of this alumina as 0.462 GPa. Finally, based on Sairam and Cliftons
(1994) experimental value of normal stress vs. shear stress coefficient of 0.2, 1, = 0.273 (Satapathy and
Bless, 1996).
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Fig. 2. Speeds of the comminuted and cracked zones.

Fig. 2 shows the expansion velocities of cracked and comminuted fronts for different cavity expansion
velocities in AD995 ceramic. For a cavity expansion velocity of 980 m/s the cracked region disappears, i.e.,
C. = C, =4.9 km/s. Thereafter the material response is elastic-comminuted. Similar observations were
made by Forrestal and Tzou (1997) for dynamic cavity expansion in concrete. The speed of the comminuted
zone becomes saturated at a level of 9.5 km/s, after a cavity expansion speed of about 1.5 km/s. This speed is
lower than the dilatational elastic wave speed of about 10.5 km/s. Strassburger et al. (1994) had observed a
saturation speed of about 9.5 km/s in end-on impact of alumina plates by cylindrical projectiles whose
diameter was greater than the thickness of the target plates. Even though this experimental geometry was a
plane stress configuration, the saturation limit speed of the failed zone seems to be similar to that found for
spherical cavity expansion.

To adapt the dynamic cavity expansion pressure for modeling linear penetration, the penetration speed
and penetration pressure must be suitably correlated to the cavity expansion speed and the cavity ex-
pansion pressure. To account for a non-uniform radial pressure distribution at the cavity wall, Goodier
(1965) assumed a factor of cosO (0 is the angle from the axis of penetration) for the dynamic pressure
variation on the penetration cavity wall. He then equated the pressure prevailing in the linear penetration
process to the average cavity expansion pressure, which resulted in a multiplication factor of 2/3 for the
averaged dynamic term in the force balance equation. On the other hand, Forrestal et al. (1995) adapted
the dynamic spherical cavity expansion solution for metals by assuming a cosine variation in the normal
component of the cavity expansion velocity. This assumption resulted in a multiplication factor of 1/2 for
the averaged dynamic term in the force balance equation. Hydrocode simulations in CTH (Walker and
Anderson, 1995) indeed indicate a spherical quality in the variation of velocity component around the
cavity wall, using which Walker and Anderson introduced a velocity potential that resulted in a cosine
variation for the particle velocity at the cavity wall. Even though Forrestal et al.’s approximation was
introduced for rigid body penetration, and Walker—-Anderson approximation was used for eroding pen-
etration, both agree on the nature of particle velocity distribution at the cavity wall. We assume that the
normal components of the penetration velocity exhibits a cosf variation i.e., it ranges from V at 0 = 0 to
zero at 8 = /2. The pressure variation resulting from this assumed velocity distribution is averaged over
the hemi-spherical surface, i.e.,

2n z
P. = (P.(Vcosh)) :2;2/0 /OzPC(Vcose)(rzsiHHde(j)), (50)
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where the cavity expansion pressure function P.(¥ cosf) acting on an elemental area of r*sinf0dfd¢, is
derived in this paper. The pointed brackets and a bar over the variable are used to indicate averages. The
average cavity expansion pressure so calculated is then compared to the penetration pressure. To assess the
correctness of this approach, we compute the averages for eroding penetration into metal targets for which
a well-established penetration equation (Tate, 1969) is available. The dynamic spherical cavity expansion
pressure in an incompressible elastic—perfectly plastic material is given by (Hopkins, 1960)

2Y 2E Pa 3[dal’
p="l1+m=2 fa 214 1
3 [ +n3Y]+p<a6t2+2[6t}> (51)

Assuming a cosine variation of velocity, i.e. 0a/0t = V cosf and steady state penetration (8%a/0f* = 0),
inserting Eq. (51) in Eq. (50) results in

P.

—Z—Y 1 an—E
3 3Y

} +%sz (52)

which exhibits identical velocity dependence in the target portion of the Tate equation.

The average cavity expansion pressures calculated from Eq. (50) for AD995 alumina ceramic are plotted
in Fig. 3 for different levels of shear saturation in the comminuted region. The saturation values are in-
dicated in the figure. The curves for no saturation cap yield the value of quasi-static cavity expansion
pressure that was derived by Satapathy and Bless (1996) at zero cavity expansion velocity as a check for the
numerical solution. Rosenberg et al.’s (1987) plate impact experiments suggested that the shear stress be-
hind the shock wave saturates at about 2.7 GPa for AD85 ceramic. The material immediately behind the
shock wave is unlikely to be totally damaged. Thus, the saturation level of the lower curve should be less
than this value. In Fig. 3, the cavity expansion pressure is plotted for four different levels of saturation value
and for /; = 0.273. Experimental values from Subramanian and Bless (1995) for the interface pressure for a
tungsten projectile penetrating a Coors-AD995 alumina ceramic for impact velocities up to 3.5 km/s (the
abscissa in the plots are penetration velocity which are typically 0.5-0.7 times the impact velocity as
measured experimentally) are also plotted in the same figure. Assuming that the specimen’s finite size has
not affected the experiments, the data exhibits closer agreement with the analytical solution for saturation
stresses in the range of 1-1.5 GPa.

3E+10m ) Experimental Data
— --— 05GPa
—— - 1.0GPa
2.5E+10 jm — - - 1.5GPa
© — - 20GPa =
o No saturation cap -
g 2E+10 - - _ -
2 . .
& 1sE410 ./. -
2 . —
> -
8 1E+0 —
e —-"
0]
0 'l 'l 'l 'l J J
0 500 1000 1500 2000 2500 3000

Penetration Velocity, m/s

Fig. 3. Cavity expansion pressure vs. penetration velocity for different shear-saturation levels.
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Fig. 4. Equivalent R, vs. penetration velocity for different shear-saturation levels.

Tate equation (Tate, 1969) is frequently used to model high-velocity penetration into metal targets.
This equation essentially is a one-dimensional modified Bernoulli equation, which equates the pressure
exerted by the projectile to the pressure resisted by the target at the interface. Traditionally, penetration
resistance of target materials is measured in terms of the target resistance, R, in the Tate equation, where
the inertial term is 0.5pU;. Fig. 4 shows the equivalent (R, = (P.(V cos0)) — 0.5pU;) calculated from Eq.
(50) along with the experimental values obtained by Subramanian and Bless (1995). Again, the model with
saturation stresses in the range of 1-1.5 GPa shows best agreement with the trend of the experimental
data.

10. Conclusions

The dynamic cavity expansion solution shows that the cracked region disappears at high cavity ex-
pansion speeds as the comminuted region outruns the former. Thereafter at higher expansion speeds, the
comminution region propagation speed saturates at a level slightly lower than the longitudinal wave speed.
There is reasonable agreement between the theory and experiments on penetration pressure and penetration
resistance in alumina ceramic. The cavity expansion model suggests that the quasi-static spherical cavity
expansion pressure is a good approximation for the constant R, term in the Tate equation for low-velocity
penetration. Until a penetration velocity of about 2 km/s (for which the impact velocity is over 3 km/s) the
penetration resistance decreases only slightly. Beyond this speed, the penetration resistance seems to exhibit
potential sharp decrease. This behavior of ceramics is quite different from what is observed in penetration
into RHA steel (Anderson et al., 1993). In the latter, the target resistance term decreases with increasing
velocity. Thus, ceramics should offer better resistance against high-speed penetration.
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